From DocBook to Wikipedia
An XML Publishing Case Study

Evan Lenz
XML 2008

About the presenter

* Evan Lenz
> Independent XML consultant

> Member of the XML Guild

> Former member of the W3C XSL Working
Group

About this project

This case study is about a project | did for
O’Reilly Media
My background with O’Reilly

Reader, then

Tech reviewer, then

Author
Office 2003 XML

* (co-authored with Simon St.Laurent & Mary McRae)

XSLT 1.0 Pocket Reference
Finally, consultant

What to expect

* Project overview

* MediaWiki basics
* Project details

o XSLT 2.0 highlights

 Implications

Project phase | (Spring 2008)

* Publish select books to a public wiki
(O’Reilly Commons) for the developer
community to maintain

* Target platform: MediaWiki

e Goal: Publish an entire book onto the
wiki at one click of a button

Project phase 2 (Fall 2008)

A new request

Publish a particular book, Wikipedia: The
Missing Manual (by John Broughton), to
the Help system on Wikipedia itself

slated for publication later this month or next
month

Ensure that the book content conforms
to Wikipedia conventions

LD M

Intro to MediaWiki [£ @ i]

» Open-source wiki platform VeciawWik) |

> A wiki is a collaborative website whose pages
support in-place editing

* Powered by PHP

* Originally written for, and still powers,
Wikipedia

Clicking “edit this page” on this
Wikipedia page...

XML - Wikipedia, the free encyclopedia (@D
(R () (

[1>)) (&) (M) (W htp://en.wikipedia.org/wiki /XML Birv)-([Gl*(Google Q)

2 Log in/ create account m

article discussion edit this page history

N Wikipedia is a non-profit project: please donate today. [Collapse]

D N
WIKIPEDIA ~

navigation /
= Main page XML

= Contents

» Featured content From Wikipedia, the free encyclopedia

= Current events
= Random article ~ This article may be too long to comfortably read and navigate. Please consider
£+ splitting content into sub-articles and using this article for a summary of the key points of

Bee W= the subject.
€cod Coearchd) The Extensible Markup Language (XML) is a general-purpose specification for Extensible Markup Language
] earc
et N creating custom markup Ianguages.[1I It is classified as an extensible language,
interaction because it allows the user to define the mark-up elements. XML's purpose is to aid <2%ml version="1.0"
= About Wikipedia information systems in sharing structured data, especially via the Internet, o <quiz>
= Community portal encode documents, and to serialize data; in the last context, it compares with mueStlofg - ;
Recent chanaes g i [3) 0 was [ne Torty-secon
: . Wikigedia text-based serialization languages such as JSON and YAML. pre51der_lt of the U.S.A.?
p, _ XML began as a simplified subset of the Standard Generalized Markup Language </question>
= Donate to Wikipedia . . . ot <answer>
(SGML), meant to be readable by people via semantic constraints; application DEL)
= Help .) . @ william Jefferson Clinton
languages can be implemented in XML. These include XHTML,'” RSS, MathML, </answer>
toolbox

GraphML, Scalable Vector Graphics, MusicXML, and others. Moreover, XML is I-- Note: We need to add
m_\What linke hara . N " i . " . " . . N e add S P
Done

< »l

'*;;

N

...gives you an edit window like this:

* Here’s a portion of the edit window:
B| 2 |AbI@A| - | |vnlSlz =R st ¢ | < | x e [) B Ot

The '''Extensible Markup Language''' ('''XML''') is a general-
purpose ''specification'' for creating custom [[markup language]]s. W)

* And here’s the corresponding result:

The Extensible Markup Language (XML) is a general-
purpose specification for creating custom markup languages.

Another example: previewing your edits
Preview

Remember that this is only a preview; your changes have not
yet been saved!

This is bold.
Here's another paragraph. This is italic.

Here are links to other articles on Wikipedia: XSLT, Piano, and
Klavarskribo.

B2 @A~ il —lamjs 2|5t

A |- =" P
This is '''bold'''.

Here's another paragraph. This is ''italic''.

Here are links to other articles on Wikipedia:
[[XSLT]], [[Piano]], and [[Klavarskribo]].

Phase |: O’Reilly Commons
* Powered by MediaWiki

commons

Navigation

O'Reilly Commons
Community portal
Current events
Recent changes
Random page
Help

Search l

©

[Search _1

Toolbox

What links here
Related changes
Upload file
Special pages
Printable
version

Permanent link

log out
watch

my watchlist my contributions

delete

2 Evanlenz
discussion

my talk my preferences

edit history move

article protect

O'Reilly Commons

Welcome to the O'Reilly Commons. The purpose of this site is to provide
content to communities that would like to create, reference, use, modify,
update and revise material from O'Reilly or other sources.

Contents [hide]
1 Getting Started
1.1 New Wiki Books
1.2 Commons Pool
1.3 Community Documentation

Getting Started

= Terms of Service

= Editing Policy

= Uploading/contribution Policy

= Discussion (Traditicnal Legal Frameworks, Open Project Frameworks, Differences)
= Characteristics of new media in the Internet age

New Wiki Books

This area is for original content that is written and edited directly in the MediaWiki framework. It is
our hope that many interested individuals will contribute and make the resulting product more
appealing and complete. Content that appears in this area may be used in other forms and venues.
So you should make yourself aware of our terms of service and policies associated with
participating in 2 unfettered group.

[edit]

[edit])

= The Art of Community

O’Reilly Commons

Purpose

“...to provide content to communities that would like
to create, reference, use, modify, update and revise
material from O'Reilly or other sources.”

See also:

About O’Reilly books published there:

“...content contributed by O'Reilly Media to anyone
who would like to edit, contribute and get involved in
revising or modifying content that, today, may not
make commercial sense as a printed book.”

|6 books so far...

e Programming Jabber

* QuickTime for Java:A Developer's Notebook
e Ubuntu Hacks

» SVG Essentials

e PHP Cookbook

» Essential CVS

e Learning Cocoa with Objective-C

e SpamAssassin

e XPath and Xpointer

» Greasemonkey Hacks

» Network Security Tools

o Test Driving Linux

 Linux in a Windows World

* Beyond Java

 Visual Basic 2005:A Developer’s Notebook
» Open Sources 2

Content organization for each book

Chapters
| page per chapter

Using the same convention followed by
wikibooks.org

Optionally grouped into parts

| page per part
Include the book’s TOC on every page
Page names follow this convention:

Book_Name/Chapter_Name, or
Book_Name/Part_Name/Chapter_Name

Example book page: PHP Cookbook

article discussion edit history protect delete move watch

PHP Cookbook
The PHP Cookbook is a collection of problems, solutions, and Skt Susmpln o FHP vy

practical examples for PHP programmers. The book contains a
unigue and extensive collection of best practices for everyday PHP
programming dilemmas. It contains over 250 recipes, ranging
from simple tasks to entire programs that demonstrate complex :
tasks, such as printing HTML tables and generating bar charts -- a , _; 7% nX
treasure trove of useful code for PHP programmers, from novices = 7o
to advanced practitioners. PHP

Contents [edit] Cookbook

m Preface

= Chapter 1: Strings

= Chapter 2: Numbers

m Chapter 3: Dates and Times

m Chapter 4: Arrays

m Chapter 5: Variables

m Chapter 6: Functions

m Chapter 7: Classes and Objects
m Chapter 8: Web Basics

m Chapter S: Forms

4

Example chapter page:
PHP Cookbook/ Preface

0o N0

| < & () (X) () ([} http://commons.oreilly.com/wiki/index.php/PHP_Cookbook/Pri.y)

PHP Cookbook/Preface - WikiContent

—

v) » ([GJx(Google Q)

O’REILLY'

commons

Navigation

O'Reilly Commons
Community portal
Current events
Recent changes
Random page
Help

Search

(Go) [Search

Toolbox

2 Evanlenz
history protect

PHP Cookbook/Preface

< PHP Cookbook

article discussion edit

PHP is the engine behind millions of dynamic web applications. Its broad
feature set, approachable syntax, and support for different operating
systems and web servers have made it an ideal language for both rapid web
development and the methodical construction of complex systems.

One of the major reasons for PHP's success as 2 web scripting language is
its origins as a tool to process HTML forms and create web pages. This
makes PHP very web-friendly. Additionally, it is a polyglot. PHP can speak to
a multitude of databases, and it knows numerous Internet protocols. PHP
also makes it simple to parse browser data and make HTTP requests. This
web-specific focus carries over to the recipes and examples in the PHP
Cookbook.

This book is 2 collection of solutions to common tasks in PHP. We've tried to
include material that will appeal to everyone from newbies to wizards. If
we've succeeded, you'll learn something (or perhaps many things) from the
PHP Cookbook. There are tips in here for everyday PHP programmers as well
as for people coming to PHP with experience in another language.

PHP, in source-code and binary forms, is available for download for free from
http://www.php.net/ . The PHP web site also contains installation
instructions, comprehensive documentation, and pointers to online
resources, user groups, mailing lists, and other PHP resources.

my talk my preferences
delete move

my watchlist
watch

my contributions log out

Preface

Chapter 1: Strings

Chapter 2: Numbers

Chapter 3: Dates and Times
Chapter 4: Arrays

Chapter 5: Variables

Chapter 6: Functions

Chapter 7: Classes and Objects
Chapter 8: Web Basics

Chapter 9: Forms

Chapter 10: Database Access
Chapter 11: Web Automation
Chapter 12: XML

Chapter 13: Regular Expressions
Chapter 14: Encryption and Security
Chapter 15: Graphics

Chapter 16: Internationalization and
Localization

= What links here = Chapter 17: Internet Services
u Rellate;dff:hanges Contents [hide] = Chapter 18: Files
= Upload file s :
oo e || | 2ok oo =
= Printable 2 What Is in This Book .
version 3 Other Resources 0 Err el [
= Permanent link 3.1 Web Sites = Colophon
3.2 Books
4 Conventions Used in This Book
4.1 Programming Conventions
4.2 Typesetting Conventions
5 Comments and Questions
6 Acknowledgments
6.1 David Sklar
6.2 Adam Trachtenberg a
v
Done i?- A

Q. How do you get a lot of content
onto a wiki?

Q. How do you get a lot of content
onto a wiki?

* Answer: make it look like it was exported
from another wiki

MediaWiki’s export function

* Export any number of pages via the
Special:Export page
» MediaWiki will give you a big XML file

special
Export pages
You can export the text and editing history of a particular page or set of pages wrapped in some XML.

This can be imported into another wiki using MediaWiki via the import page.

To export pages, enter the titles in the text box below, one title per line, and select whether you want
the current version as well as all old versions, with the page history lines, or just the current version
with the info about the last edit.

In the latter case you can also use a link, e.g. Special:Export/O'Reilly Commons for the page "O'Reilly

Commons".

Add pages from category: (Add)

For example, exporting this page...

2/

WIKIPEDIA

The Free Encyclopedia

navigation

= Main page

= Contents

= Featured content
= Current events

= Random article

search

[Go) [Search)

S N—

interaction

= About Wikipedia
= Community portal
= Recent changes
= Contact Wikipedia

XML - Wikipedia, the free encyclopedia (G
() (#) (W, nutp://en.wikipedia.org/wiki/XML 8r v) - (G coogle Q)
2 Log in/create account m
article discussion edit this page history
N Wikipedia is a non-profit project: please donate today. [Collapse]

 A_—
$3,484,753

Our Goal: $6 million

XML

From Wikipedia, the free encyclopedia

~ This article may be too long to comfortably read and navigate. Please consider

£~ splitting content into sub-articles and using this article for a summary of the key points of
W= the subject.

The Extensible Markup Language (XML) is a general-purpose specification for Extensible Markup Language

creating custom markup Ianguages.[1J It is classified as an extensible language,

because it allows the user to define the mark-up elements. XML's purpose ig to aid <2ml version="1.0"
information systems in sharing structured data, especially via the Internet, Clo <quiz>

encode documents, and to serialize data; in the last context, it compares with <guestion>

N 3 who was the forty-second
text-based serialization languages such as JSON and YAML. president of the U.S.A.?

o XML began as a simplified subset of the Standard Generalized Markup Language </question>

= Donate to Wikipedia . . . L <answer>

(SGML), meant to be readable by people via semantic constraints; application A)
= Help _) ‘ (4] William Jefferson Clinton

languages can be implemented in XML. These include XHTML, ™~ RSS, MathML, </answer> -

A

toobox GraphML, Scalable Vector Graphics, MusicXML, and others. Moreover, XML is I-- Note: We need to add 3
m_\What linke hara . " n PP TR " . L PO . - e dd e 1 od oo <
Done % 4

...results in a file that looks like this

<mediawiki xmlns="http://www.mediawiki.org/xml/export-0.3/"
version="0.3" xml:lang="en">
<page>
<title>XML</title>
<revision>
<timestamp>2008-12-06T18:17:39Z</timestamp>
<contributor>
<username>JLaTondre</username>
</contributor>

<comment>fix incorrect link to island wusing
[[Project:AutoWikiBrowser |AWB]]</comment>

<text>The '''Extensible Markup Language''' ('''XML''') is a
general-purpose ''specification'' for creating custom [[markup

languagel]]s.
. Etc.
</text>

</revision>
</page>

</mediawiki>

Importing content to another wiki

* Once you have the MediaWiki XML
dump, you can upload it to another wiki
via the Special:Import page

special
Import pages

Please export the file from the source wiki using the Special:Export utility, save it to your disk
and upload it here.

Upload file
Ir (Browse...) [Upload file)

Bulk-loading new content

MediaWiki’s export format can also be
used to add brand new content to a wiki,
provided that it’s packaged as MediaWViki
expects it

You can create any kind of page:

Regular content pages, image pages, template
pages, etc.

What content did we have?

Lots of DocBook XML content stored in
an XML database powered by MarkLogic

Retrievable via an internal VWeb-based
application at O’Reilly called “deli”

Give it an ISBN number and get back a zip file
containing:

Full XML content of the book

All supporting files, such as images

The goal: push a button and make a book
appear on the wiki

The final implementation

A bash shell script that:

Retrieves and unzips the content, given an
ISBN

Transforms content from DocBook XML to
MediaWiki’s export XML format

Imports the resulting dump and images
using server-side PHP scripts:
importDump.php
importlmages.php

Here's the “button” (script) to push:

® OO0 Terminal —

IMAGE _RENAMIN
RENAMED _IMAG
WIKI_MAINTENANCE_DI

$qn]

echo

echo

unzip

v homesevan/saxon9/saxon?. jar $1l.xml shome/evan/do
copy-script-n
renamed-images-dir=%F
D) Y

KI_PAGES .xml

echo

echo

echo "
sudo EWIKI_MAINTENANCE _DIRZ importDump.php WIKI_PAGES.xml
echo

[R/importImages.php $RE

The heavy lifting

Step 2 (transforming the XML) is where
the real work happens

The final stylesheet, doc2wiki.xsl:
Constructs a <mediawiki> export doc

Creates a <page> element for each
<chapter> in the DocBook source

Inserts the content of each chapter into the
MediaWiki <text> element

...like this:

<mediawiki xmlns="http://www.mediawiki.org/xml/export-0.3/"
version="0.3" xml:lang="en">

<page>

<title>PHP Cookbook</title>

<revision>
<timestamp>2008-03-07T19:17:37Z</timestamp>
<contributor>

<username>Docbook2Wiki</username>

</contributor>
<comment>Initial conversion from DocBook</comment>
<text>[[Image:PHP Cookbook cover.gif|right]]

The ''PHP Cookbook'' is a collection of problems, solutions, and
practical examples for PHP programmers.
<!-- etc... -=->
</text>
</revision>
</page>
<!-- rest of pages -->

</mediawiki>

Design goals of phase |

* Philosophy used:

|. Make it user-friendly for wiki readers

Preserve structural integrity using HTML tags
when necessary

E.g., preserve list nesting structure and alignment

2. Make it user-friendly for wiki editors

Minimize use of HTML tags in the wiki markup
Use wiki shorthands whenever possible

i
£

How XSLT 2.0 features helped

Making things Making code
possible beautiful

This is a continuum, of course. XSLT
1.0 is Turing-complete, so theoretically
everything is possible in 1.0. But that
doesn’t mean everything is practical.

30

Making things possible

Finding special wiki characters in code
examples and escaping them

Finding HTML markup in code examples
and escaping them

But don’t just escape every "<"

Selectively escape only those tag names that
are interpreted as HTML by MediaWiki

This supports the design goal of keeping
things friendly for wiki editors

|. Escaping wiki markup in content

* Code example from PHP Cookbook:
<programlisting>
Sarray[3] = Sarray['foo'] = '';
</programlisting>

* Naively converts to, simply:

Sarray([3] = Sarray['foo'] = '';

But the result doesn’t look right

» The apostrophes are missing and the
colon is italicized:

e Because ' ' means italicize in wiki markup

| could have punted

* Wrap <nowiki> around every single
result text node

° i.e. everything but the wiki markup

* For example, convert this DocBook:

° <para>Here 1is some <emphasis role="bold">bold
text</emphasis>.</para>

* to this wiki markup:

o <nowiki>Here is some </nowiki>"'"''<nowiki>bold
text</nowiki>"""'<nowiki>.</nowiki>

But that would be horrible

* | remembered design goal #2:
> user-friendliness for wiki editors
* So | needed to selectively apply the

<nowiki> tag to text content that
contains wiki markup

XSLT 2.0°s regular expression
support makes that easy

* Here’s the template rule | used to wrap a <nowiki> tag
around text nodes that contain wiki markup:

<!-- Escape Wiki markup that can be escaped using <nowiki> -->
<xsl:template mode="escape-wiki-markup"
match="text () [matches (., $wiki-regex, 'x')]"
priority="1">
<nowiki>
<xsl:copy/>
</nowiki>

</xsl:template>

Regular expression

* And here’s the regular expression | used to find wiki
markup in content:

<xsl:variable name="wiki-regex">

N\ <!-- template references -->
ERAY
NN <!-- page links -->
| NI\
N\ <!-- table start delimiter -->
I <!-- bold -->
! <!-- italic -->

</xsl:variable>

Result looks correct now

* Now converts to:

<nowiki> Sarray[3] = Sarray['foo']l] = '"';</nowiki>

* And looks good in the result:

2. Heavier-duty example

o XSLT 1.0 could have handled the last example
by doing a bunch of contains() tests

e But this one would be tougher:
&1t; ((1==) |
(/?(nowiki |
ref | references |
b | del | 1 | ins | u | font | big | small | sub | sup |
hl | h2 | h3 | hd | h5 | h6 | cite | code | em | s | strike |
strong | tt | var | div | center | blockquote | ol | ul | dl |
table | caption | pre | ruby | rt | rb | rp | p | span | u |
br | hr | 11 | dt | dd | tr | td | th
) [Ma-zA-Z]
)

e (matches HTML start & end tags and HTML
comments)

Resulting benefit: cleaner code
examples featuring XML or HTML

» Code examples that look like this:

B|2 |AD@A | = | |vil§RZ —|

<section>
<title>Example</title>

</section>

» |Instead of this:

B|2 |AD@A |- | Vil —|

Making code beautiful

* a.k.a. engineering good software
» a.k.a. having fun programming ©

* In the Ruby world, the DRY principle
> “Don’t Repeat Yourself”

First example:

Multiple-mode template rules

* A common pattern | used was the
identity transform

* | used a 6-stage pipeline, in which 5 out of
6 transformations made only incremental
changes to the input

First, here’s the pipeline

<!-- STAGE 1 -->
<xsl:variable name="pre-processed">
<xsl:apply-templates mode="pre-process" select="."/>
</xsl:variable>
<!-- STAGE 2 -->
<xsl:variable name="wiki-markup-escaped">
<xsl:apply-templates mode="escape-wiki-markup" select="S$pre-processed/*"/>
</xsl:variable>
<!-- STAGE 3 (the main transformation from DocBook to MediaWiki XML) -->
<xsl:variable name="intermediate-result">
<xsl:apply-templates mode="mediawiki-xml" select="$wiki-markup-escaped/*"/>
</xsl:variable>
<!-- STAGE 4 -->
<xsl:variable name="html-serialized">
<xsl:apply-templates mode="serialize-html" select="S$intermediate-result/*"/>
</xsl:variable>
<!-- STAGE 5 -->
<xsl:variable name="code-examples-formatted">
<xsl:apply-templates mode="format-code-examples" select="S$html-serialized/*"/>
</xsl:variable>
<!-- STAGE 6 -->
<xsl:variable name="final-result">
<xsl:apply-templates mode="change-to-default-ns" select="$code-examples-formatted/*"/>

</xsl:variable>

Next, here’s the space-saving code

» Assigning more than one mode to a given template rule (a new
feature in XSLT 2.0) saves me from having to duplicate a lot of code.

* Here’s the identity transform, listed just once as a baseline for all 5
pipeline stages that use incremental transformations

<!-- Re-use this same basic identity rule for multiple stages -->
<xsl:template mode="pre-process

escape-wiki-markup
serialize-html
format-code-examples

change-to-default-ns" match="@* | node()">
<xsl:copy>
<xsl:apply-templates mode="#current" select="@* | node()"/>
</xsl:copy>
</xsl:template>

e In XSLT 1.0, I'd have to repeat myself a bunch (using 5 template rules
instead of)

Second example:

User-defined functions in patterns

o User-defined functions are new in XSLT
2.0

* They can be particularly useful in avoiding
duplication in template rule “match”
patterns

First, we have patterns with long
lists of elements

<!-- delimiter for italicized elements —-->

<xsl:template mode="bold-or-italic-mark"

match="replaceable

parameter
filename
emphasis
systemitem
citetitle
foreignphrase
lineannotation
command

firstterm">''</xsl:template>

<!-- delimiter for bold elements -->

<xsl:template mode="bold-or-italic-mark"

match="userinput

emphasis[@role="'bold']">"'"''</xsl

:template>

Next, another rule that applies to

the same (bold or italic) elements

e In XSLT 1.0, I'd have to copy and paste that long
list of elements

> Actually, I'd probably define them as an entity in the internal
DTD subset, but | digress

<xsl:template mode="inline"
match="THAT LONG LIST OF ELEMENTS GOES HERE">
<xsl:apply-templates mode="bold-or-italic-mark" select="."/>
<xsl:apply-templates mode="inline">
<!-- [some plumbing omitted here] -->
</xsl:apply-templates>
<xsl:apply-templates mode="bold-or-italic-mark" select="."/>
</xsl:template>

Then, a user-defined function

* This function tests whether a given
element is in my long list of elements

<xsl:function name="f:is-bold-or-italic"
as="xs:boolean">
<xsl:param name="element" as="element ()"/>
<xsl:variable name="mark">
<xsl:apply-templates mode="bold-or-italic-mark"
select="Selement" />
</xsl:variable>
<!-- Return true if this element is in the list -->
<xsl:sequence select="boolean (string($mark))"/>
</xsl:function>

Finally, we call the function from the

match pattern

* Now we don’t have to repeat that long
list of element names:

<xsl:template mode="inline"
match="*[£f:is-bold-or-italic(.)]">
<xsl:apply-templates mode="bold-or-italic-mark" select="."/>
<xsl:apply-templates mode="inline">
<!-- [some plumbing omitted here] -->
</xsl:apply-templates>
<xsl:apply-templates mode="bold-or-italic-mark" select="."/>

</xsl:template>

Design goals of phase |

(summarized again)
* In order of importance:

|. Make it user-friendly for wiki readers

2. Make it user-friendly for wiki editors

Phase 2 design goals are the reverse

* In order of importance:

|. Make it user-friendly for Wikipedia editors

Editors should only see wiki markup and never
any HTML tags

2. Make it look reasonable
even if structure is lost

even if nested lists aren’t aligned perfectly

Implementation of phase 2

* Only applicable to one book, so
essentially a one-off conversion

» Consists of a new stylesheet that imports
doc2wiki.xsl, making selective
customizations

Phase | example result

Adding Text

You edit Wikipedia articles in 2 big, white text box in the middle of the window. To get to that box, you must
go into edit mode.

1. In the search box on the left side of the screen, type WP:SAND, and press Return to go to the
sandbox.

You'll do all your work in this chapter in the sandbox, so you won't actually change any Wikipedia
articles.

2. From the sandbox page (Figure 1-1), click the "edit this page” tab.

You‘re now in edit mode, complete with the edit box shown in Figure 1-2.

Note:
If the bottom of Figure 1-2 looks intimidating, don’t worry: There are only about two dozen
items that editors actually use, except in exceedingly rare circumstances. If you‘re curious, A
Tour of the Wikipedia Page provides a complete cross-reference to everything on the bottom of
Figure 1-2, as well as all the icons on the edit toolbar.

3. Delete everything but the first three lines, which are instructions.

e Wiki markup does not support this layout without using
HTML elements (, , and <div>).

Phase 2 example result

Adding Text

You edit Wikipedia articles in 2 big, white text box in the middle of the window. To get to that box, you must
go into edit mode.

1. In the search box on the left side of the screen, type WP:SAND, and press Return to go to the sandbox.

You'll do all your work in this chapter in the sandbox, sc you won't actually change any Wikipedia
articles.

2. From the sandbox page (Figure 1-1), click the "edit this page” tab.

You're now in edit mode, complete with the edit box shown in Figure 1-2.

Note:
If the bottom of Figure 1-2 locks intimidating, don’t worry: There are only about two dozen items
that editors actually use, except in exceedingly rare circumstances. If you're curious, A Tour of the
Wikipedia Page provides a complete cross-reference to everything on the bottom of Figure 1-2, as
well as all the icons on the edit toolbar.

3. Delete everything but the first three lines, which are instructions.

o Uses 100% pure wiki markup (and plain text numbering)

» Phase 2 design goal achieved: make it look...reasonable

A difference in philosophy

Personally, the phase 2 example offends
my sensibilities, but perhaps I'm just being
an XML bigot

Bottom line: Wikipedia editors won’t be
scared away by HTML tags
Round-tripping seems remotely possible
with phase |, but not with phase 2

Of course, round-tripping was never the goal

Categorizing transformations
according to where the data lives

Source Result
(XSLT input) |(XSLT output)

Presenting/querying

data v

Creating data v
(“up-conversions”™)

Migrating data > .
(to a new format)

Forking data v v

(multiple copies)

Categorizing transformations
according to where the data lives

Source Result
(XSLT input) |(XSLT output)

Presenting/querying

data v
Creating data
y N v
(“up-conversions”)
Migrating data > .
(to a new format)

> Forking data v v

(multiple copies)

An XML “forking” case study

The book content starts a new (separate)
life on Wikipedia

Over time it will essentially be a different work
Apparent wiki philosophy:

Throw structure to the wind

With an army of active, passionate authors and
editors working in their free time, perhaps
structure ain't so important

Highlights the advantages of the XML
approach

particularly when you don't have such a generous
army of workers at your disposal

Questions!

